Home Technology Do You Speak Machine?
Our website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

Do You Speak Machine?

by uma



Joseph Kenny is Vice President Global Customer Transformation for ServiceMax.

Service technicians need to learn to speak machine and work closely with automation

“We are sacrificing learning in our quest for productivity,” says Matt Beane, Assistant Professor in the Technology Management Program at the University of California, speaking at a Ted Talk earlier this year. “If we do nothing about this, millions of us are going to hit a brick wall, as we try to learn to deal with AI.”

Beane references his research in healthcare where he found that practical skills development was in danger of being undermined by increased automation and an over-reliance on experienced hands. For most professions, the majority of learning how to actually do the job is on the job. It is this ability to learn on the job, to work alongside machines and develop new and existing skills, is what Beane has observed as being sacrificed. The human might not be able to do things as fast as AI and machine learning, but it must have the competence to step in where required. 

In the short term, the acceleration of AI may not be such a huge problem. It reduces risk of error and is therefore more likely to keep customers happy. In the longer term, this approach will almost certainly lead to huge skills gaps and perhaps a misplaced reliance on automation.

Algorithms and AI are widely tipped to impact a wide swathe of jobs. A recent UK ONS report revealed that around 1.5 million jobs in England are at high risk of some of their duties and tasks being automated in the near future. The Pew Research Center also recently revealed how automation will impact long term job security, with just 14 percent of adults claiming they will have more job security by 2050.

It’s a recurring theme across industries. In field service and maintenance, there has already been a change. Growth in sensor deployment has led to an increase in data analytics and the remote management of devices via IoT networks. This has had a knock-on effect in terms of job roles and skills. Businesses have, as a result, become more equipment focused, building customer knowledge as well as machine performance around automated data. 

Field service and plant-based maintenance teams have had to adapt, and it has been to their advantage that the emphasis within organisations has shifted. Service is no longer seen as a cost to the business. The ability to provide intelligence on products and customers, and in many cases be the front line for businesses, means service is now strategically important.

For many businesses though, this has led to employment issues, especially as the workforce ages. Knowledge loss is an increasingly common problem. According to the Service Council, seventy percent of service organisations say they would be burdened by the knowledge loss of a retiring workforce in the next five to 10 years, while 50 percent claim they are currently facing a shortage of resources to adequately meet service demand. Automation is great, but it will only go so far to help.

Businesses need skilled service techs that not only understand the products and machines they maintain and support but can also understand and work with data. Rather than customers asking if a technician can come and fix their equipment, they will be asking what the equipment is trying to say about its performance. This requires service technicians to understand data in context, in the real world and translate it into customer speak. It demands planning, skills development, and an understanding of the machines to improve service in the future.

Interestingly, the TSIA recently found that half of all field services organisations don’t have a formal career path in place for their field service engineers. This, in my view, is a huge point of unnecessary commercial risk. These organisations are not doing enough to prepare younger service techs for a mixed reality future – one where they will have to work more closely with digital technology and machines than any previous generation. It won’t happen by accident.

There is certainly a need for an integral ‘system of record’ that captures accurate data about equipment ‘as maintained’. The need for this type of database, showing how equipment looks right now, enables service technicians to understand the context of what equipment data is telling them. While automation can create alerts to problems or potential issues, the service tech will still need to know how to solve those problems quickly and efficiently.

From reading the data correctly, understanding how to correct issues, source parts and manage customer expectations, the fundamentals are not all that new. But as machines evolve with more in-built automation and data-driven analytics, there is a danger that businesses will over-rely on automation, letting their human diagnostic strengths lapse. 

As Matt Beane suggests, this could be a problem. Humans need to be able to speak the same language as automated machines, but these machines should not block skills development. In service maintenance terms, AI and automation are not and should never be considered a human replacement. If anything, it is opening up the industry and creating a brand-newfield of opportunity.



You may also like